Introduction to Bayesian Meta-analysis

Hwanhee Hong, PhD
Associate Professor
Department of Biostatisitcs and Bioinformatics
Duke School of Medicine

March 27, 2025
Guest Lecture
BIOS 725 Bayesian Health Data Science
(Instructor: Dr. Sam Berchuck)
Duke University

Outline

Introduction

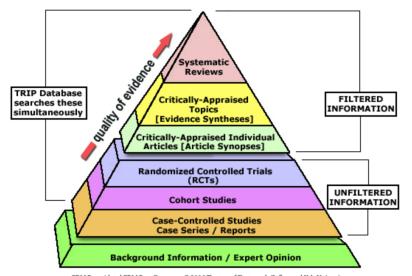
Meta-analysis

3 Network meta-analysis (NMA)

Outline

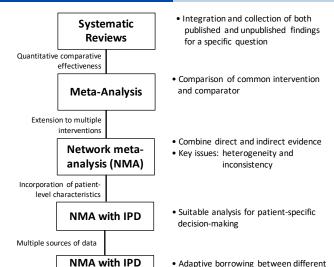
Introduction

Meta-analysis


3 Network meta-analysis (NMA)

Comparative effectiveness research

- Comparative effectiveness research (CER) helps answer "what works best" and inform health-care decisions by providing evidence on the effectiveness, benefits, and harms of different treatments.¹
- The evidence can be obtained from existing or new research studies that compare drugs, medical devices, or ways to deliver health care.
- The goal can be achieved by synthesizing all relevant study findings in a principled way about key aspects of efficacy or safety of certain interventions.
- CER also helps improve evidence-based medicine, personalized medicine, and the use of current best evidence in making decisions about the care of individual patients.


¹Agency for Healthcare Research and Quality (AHRQ) http://www.ahrq.gov♂ → 〈 ♠ → 〈 ♠ → ♠ ♠ ◆ ◇ ◇ ○

Hierarchy of evidence

EBM Pyramid and EBM Page Generator, © 2006 Trustees of Dartmouth College and Yale University.

All Rights Reserved. Produced by Jan Glover, David Izzo, Karen Odato and Lei Wang.

data source

IPD: individual participant-level data AD: aggregate-level data

and AD

Systematic Reviews Quantitative comparative effectiveness · Frequentist vs. Bayesian Meta-Analysis · Rare event Extension to multiple interventions · Frequentist vs. Bayesian Network meta- Contrast-based vs. arm-based models Multiple outcomes analysis (NMA) Single-arm trials Incorporation of patientlevel characteristics Multiple outcomes Generalizability NMA with IPD Causal inference Missing data Treatment effect heterogeneity Multiple sources of data • Power and commensurate priors NMA with IPD · Bayesian models and AD

IPD: individual participant-level data AD: aggregate-level data

Outline

Introduction

2 Meta-analysis

3 Network meta-analysis (NMA)

Frequentist vs. Bayesian meta-analysis

Article

CLINICAL

Meta-analysis of rare adverse events in randomized clinical trials: Bayesian and frequentist methods

Clinical Trials 1-14 © The Author(s) 2020 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1740774520969136 iournals.sagepub.com/home/cti

Hwanhee Hong 10, Chenguang Wang 2 and Gary L Rosner 2

Hong et al. (2020). Clinical Trials 18(1):1-14

An example of meta-analysis

BMJ Open Safety and efficacy of hydroxychloroquine as prophylactic against COVID-19 in healthcare workers: a meta-analysis of randomised clinical trials

Hwanhee Hong ^{1,2} Anne Friedland, ³ Mengyi Hu, ¹ Kevin J Anstrom, ⁴ Susan Halabi, ^{2,5} John E McKinnon, ⁶ Ravi Amaravadi ^{2,7} Jorge Rojas-Serrano, ⁸ Benjamin S Abella, ⁷ Angélica Margarita Portillo-Vázquez, ⁹ Christopher W Woods, ² Adrian F Hernandez, ² David R Boulware, ¹⁰ Susanna Naggie ^{3,2} Radha Raiasinghami0

Hong et al. (2023). BMJ Open 13:e065305

Meta-analysis

- Meta-analysis is a statistical technique for combining the findings from independent studies to assess the clinical effectiveness of healthcare interventions.
- This approach provides a quantitative (statistical) estimate of net benefit and effect heterogeneity aggregated over all the included studies.

```
Study 1 P vs. A \rightarrow OR1
Study 2 P vs. A \rightarrow OR2
Study 3 P vs. A \rightarrow OR3
Study 4 P vs. A \rightarrow OR4
Study 5 P vs. A \rightarrow OR5
```


Set up the research question

To address the most common limitation, inadequate power to show a modest effect, we conducted a formal meta-analysis of pre-exposure prophylactic HCQ studies in HCWs. We conducted a systematic search for clinical trials of pre-exposure prophylactic use of HCQ against infection of SARS-CoV-2 in HCWs, thoroughly compared similarities and differences in characteristics of the identified studies and performed a Bayesian meta-analysis to combine results of the trials.

Hong et al. (2023). BMJ Open 13:e065305

Eligibility criteria (population)

Eligibility criteria and study selection

The eligibility criteria included phase II or phase III RCTs of HCQ for use as PrEP in HCWs with moderate to high risk of exposure. We excluded observational studies, crossover trials, studies where the method of allocation to treatment was not truly random, duplicate studies and non-original data studies. No language, publication date or publication status restrictions were applied. References of prior systematic reviews and meta-analyses were also screened for related studies. Study selection involved screening of titles and abstracts followed by full-text evaluation of possible eligible studies.

Hong et al. (2023). BMJ Open 13:e065305

Search strategy

Search strategy and information sources

We searched PubMed/Medline and Ovid/EMBASE databases from database inception through the final search date, 14 March 2023. We used keywords related to COVID-19, HCQ and RCTs. The full search strategies are provided in online supplemental table 1.

eTable 1. Search code that was used to identify publications as of March 14, 2023

PubMed search

#1	covid[Title] OR coronavirus[Title] OR sars-cov-2[Title]
#2	hydroxychloroquine[Title]
#3	randomized[Title/Abstract] OR randomized[Title/Abstract]
#4	#1 AND #2 AND #3

Embase search

#1	covid:ti OR coronavirus:ti OR 'sars cov 2':ti
#2	hydroxychloroquine:ti
#3	randomized:ab,ti OR randomised:ab,ti
#4	#1 AND #2 AND #3

Flow chart

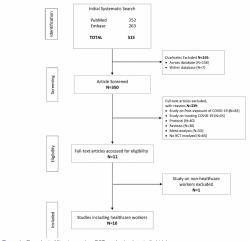


Figure 1 Flow chart of literature review. RCT, randomised controlled trial.

Data collection process

Data collection process

Each of the selected studies was independently reviewed by two reviewers (AF, MH or HH). We extracted data on the study design, baseline characteristics, interventions and outcomes. Any disagreements of collected information between reviews were reconciled through discussion by all three reviewers.

Hong et al. (2023). BMJ Open 13:e065305

Outcome definition

Outcome measures

The primary efficacy outcome for the meta-analysis was laboratory-confirmed SARS-CoV-2 infection by PCR test and the primary safety outcome was incidence of adverse events (table 1). The secondary efficacy outcome was suspected or probable SARS-CoV-2 infection. Included studies had the following outcome definitions: (1) laboratory-confirmed SARS-CoV-2 infection defined as COVID-19-like symptoms and positive SARS-CoV-2 PCR and (2) suspected or probable SARS-CoV-2 infection defined as COVID-19-like symptoms but lack of confirmatory PCR testing.

Outcomes should be pre-specified.

Hong et al. (2023). BMJ Open 13:e065305

Meta-analysis outcome data

eTable 6. Results of outcome measures in trials included in the meta-analysis. Sample size and the number of participants who had each outcome are reported with proportions (%) in parentheses.

	Treatment	N (ITT)	Confirmed COVID-19	Suspected with COVID compatible symptoms	Adverse event ²
Naggie et al.	HCQ	683	3 (0.4)	38 (5.6)	16 (2.3)
(HERO-HCQ)	Placebo	676	6 (0.9)	47 (7.0)	13 (1.9)
Abella et al.	HCQ	64	4 (6.3)		29 (45.3)
(PATCH)	Placebo	61	4 (6.6)		17 (27.9)
Rajasingham et al.	HCQ1	989	11 (1.1)	47 (4.8)	316 (32.0)
(MN-COVID-PREP)	Placebo	494	6 (1.2)	33 (6.7)	100 (20.2)
Rojas-Serrano et	HCQ	62	1 (1.6)		32 (51.6)
al.	Placebo	65	6 (9.2)		38 (58.5)
McKinnon et al.	HCQ1	387	2 (0.5)	22 (5.7)	192 (49.6)
(WHIP)	Placebo	191	2 (1.0)	13 (6.8)	85 (44.5)
Vijayaraghavan et	HCQ	211	11 (5.2)	12 (5.7)	21 (10.0)
al.	Placebo	203	12 (5.9)	12 (5.9)	14 (6.9)
Polo et al.	HCQ	224	21 (9.4)		100 (44.6)
(EPICOS)	Placebo	211	23 (10.9)		94 (44.5)
Llanos-Cuentas et	HCQ	34	5 (14.7)		
al.	Placebo	31	3 (9.7)		
Grau-Pujol et al.	HCQ	137	1 (0.7)	3 (2.2)	53 (38.7)
	Placebo	116	1 (0.9)	3 (2.6)	42 (36.2)
Syed et al.	HCQ1	154	42 (27.3)		9 (5.8)
	Placebo	46	7 (15.2)		1 (2.2)

HCQ= Hydroxychloroquine; ITT= Intention-to-treat; AE=Adverse event; COVID-RS=COVID-19 related symptoms; Vit C= Vitamin C

¹ More than one HCQ groups with different doses are lumped.

² Number of patients with any adverse events

Risk of Bias

eTable 2. Risk of bias for trials included in the meta-analysis using the Cochrane risk assessment tool. Green circle is for low risk and yellow circle is for some concerns

	Selection bias (Randomization process)	Performance bias (Deviations from the intended interventions)	Attrition bias ¹ (Missing outcome data)	Reporting bias (Measurement of the outcome)	Other sources of bias (Selection of the reported result)
Naggie et al. (HERO-HCQ)					
Abella et al. (PATCH)					
Rajasingham et al. (MN-COVID-PREP)					
Rojas-Serrano et al.					
McKinnon et al. (WHIP)					
Vijayaraghavan et al.					
Polo et al. (EPICOS)					
Llanos-Cuentas et al.					
Grau-Pujol et al.					
Syed et al.					

¹The Rojas-Serrano et al. study reported minimal loss to follow-up (<10%). The Rojas-Serrano et al. study reported 18% (25/130) lost to follow-up and additional 12% (16/130) discontinued the intervention.

Meta-analysis: Data structure

Continuous outcome
 Sample mean, sample size, and sample standard deviation

	Control	Treated
Study 1	6.9 (2.0)	3.8 (2.2)
Study 2	4.1 (1.6)	3.7 (2.3)
Study 3	2.5 (2.5)	2.3 (2.8)
	•	

Binary outcome

	Control	Treated
Study 1	25/100	48/150
Study 2	10/80	23/100
Study 3	14/130	30/150

Meta-analysis

- Meta-analysis is a statistical technique for combining the findings from independent studies to assess the clinical effectiveness of healthcare interventions.
- This approach provides a quantitative (statistical) estimate of net benefit and effect heterogeneity aggregated over all the included studies.

Study 1 P vs. A \rightarrow OR1 Study 2 P vs. A \rightarrow OR2 Study 3 P vs. A \rightarrow OR3 Study 4 P vs. A \rightarrow OR4 Study 5 P vs. A \rightarrow OR5

- Fixed effect or common treatment effect (CTE) model assumes a common treatment effect across studies. E.g., $LOR_i \equiv LOR$
- Random effects or heterogeneous treatment effect (HTE) model assumes that treatment effects vary across studies. E.g., $LOR_i \sim N(LOR, \tau^2)$

Fixed vs. random effects meta-analysis

- Fixed effect MA assumes that all studies estimate the same effect size, and therefore there is no variability between studies.
- The inverse-variance weight in a fixed effect MA is

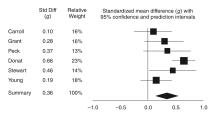
$$w_{f,i} = \frac{1}{\sigma_i^2/n_i},$$

where σ_i^2/n_i measures the within-study effect variability in the i^{th} study.

- Random effects MA assumes that the true effects in the studies are sampled from a distribution of true effects, and allows heterogeneity between studies.
- The inverse-variance weight in a random effect MA is

$$w_{r,i} = \frac{1}{\sigma_i^2/n_i + \tau^2},$$

where au^2 is the between-study effect variability.


Fixed vs. random effects meta-analysis

Impact of Intervention (Fixed effect)

	Std Diff	Relative Weight		Standardized and 95% co			
Carroll	0.10	12%		_	-	_	
Grant	0.28	13%			_		
Peck	0.37	8%			+-	ь—	
Donat	0.66	39%				_	
Stewart	0.46	10%					
Young	0.19	18%				_	
Summary	0.41	100%				-	
			-1.0	-0.5	0.0	0.5	1.0

Figure 13.1 Fixed-effect model – forest plot showing relative weights.

Impact of Intervention (Random effects)

- Study weights are more balanced under the random effects MA.
- Standard error of the summary effect is larger under the random effects MA.

Report heterogeneity

- Heterogeneity refers to treatment effect size variability between studies (possibly due to design and patient characteristics).
- Heterogeneity can be measured by I^2 or the estimated variance of random effects, τ^2 , by fitting a random effect model.
- I^2 presents the percentage of the variability in effect estimates that is due to heterogeneity rather than sampling error.
- I^2 less than 40% might not be important, 30% to 60% may represent moderate heterogeneity, and larger than 60% represents substantial heterogeneity.
- Do not solely rely on values. The actual data should be investigated.

Frequentist approaches

- Fixed effect MA: Peto and Mentel Haenszel (MH).
- Random effects MA: DerSimonian and Laird Inverse-Variance (IV)
- For rare binary outcomes, data modification (or continuity correction) is applied to for studies having one or more zero cells.

	No. of events	No. of nonevents	Total
Control group	$y_{i1} + 0.5$	$n_{i1} - y_{i1} + 0.5$	$n_{i1} + 1$
Treated group	$y_{i2} + 0.5$	$n_{i2} - y_{i2} + 0.5$	$n_{i2} + 1$
Total	$y_{i.} + 1$	$n_{i\cdot}-y_{i\cdot}+1$	$n_{i.} + 2$

Table: DM using a constant

metafor in R, metan in Stata

Hong et al. (2020) Clinical Trials. Meta-analysis of rare adverse events in randomized clinical trials: Bayesian and frequentist methods

Bayesian approach: logistic regression

Fixed effect MA:
$$logit(p_{ik}) = \mu_i + d * I(k = 2)$$

Random effects MA: $logit(p_{ik}) = \mu_i + \delta_i * I(k = 2)$

- μ_i is the study-specific baseline effect (i.e., log odds of control group for study i).
- ▶ d and δ_i are the log odds ratio (LOR) between treated and control groups.
- We distinguish the two models based on the assumption that whether we allow heterogeneity of treatment effects via LOR to the model or not.
- Random effects models assume $\delta_i \sim N(d, \tau^2)$, where τ^2 measures the heterogeneity of LOR across studies.

Bayesian approach: logistic regression

FE model:
$$logit(p_{ik}) = \mu_i + d * I(k = 2)$$

RE model: $logit(p_{ik}) = \mu_i + \delta_i * I(k = 2)$

We adopt various prior distributions

Model name	Prior distribution			
FE-vague	$\mu_i \sim N(0, 10^2)$			
	$d{\sim}N(0,10^2)$			
FE-informative	$\mu_i \sim N(0, 10^2)$			
	$d{\sim}{\sf N}(d^*,1)$			
RE-vague	$\mu_i \sim N(0, 10^2)$			
	$\delta_i \sim N(d, \tau^2), \ d \sim N(0, 10^2), \ \tau \sim Unif(0, 2)$			
RE-informative	$\mu_i \sim N(0, 10^2)$			
	$\delta_i \sim N(d, \tau^2)$, $d \sim N(d^*, 1)$, $\tau \sim Unif(0, 2)$			
RE-shrinkage	$\mu_i \sim N(m, \tau_{\mu}^2), \ m \sim N(0, 10^2), \ \tau_{\mu} \sim Unif(0, 2)$			
	$\delta_i \sim N(d, \tau^2)$, $d \sim N(0, 10^2)$, $\tau \sim Unif(0, 2)$			
	◆□▶ ◆□▶ ◆ □▶	< ≣ →	=	990

Why Bayesian in meta-analysis?

- A Bayesian thinks of parameters as random, and thus having distributions.
- That is, Bayesian 95% credible intervals are more straightforward than frequentist 95% confidence intervals.
- Bayesian models incorporate all parameter uncertainties.
- A Bayesian approach provides flexibility, enabling us to account for correlation induced by multi-arm trials.
 - Bayesian hierarchical models
 - Prior specifications
- A Bayesian approach offers probability-based interpretations, so we can easily calculate the ranking probabilities.
 - Probability of being best, second best... or worst
 - Pr(effect size < value | Data)</p>

HCQ confirmed case data

HCQ confirmed case data

study	ea	ес	na	nc
DukeHERO	3	6	683	676
Upenn	4	4	64	61
UofM	11	6	989	494
HenryFord	2	2	387	191
Mexico	1	6	62	65
India	11	12	211	203
EPICOS	21	23	224	211
Peru	5	3	34	31
Spain	1	1	137	116
Syed et al.	42	7	154	46

Stan Code for fixed effect model generated quantities {

```
ctelogit.stan = "
data{
 int NS: // number of studies
 int ec[NS]: // number of events in control
 int ea[NS]: // number of events in active
 int nc[NS]: // sample size in control
 int na[NS]; // sample size in active
parameters{
  real lor;
 vector[NS] mu:
transformed parameters{
 vector[NS] logit_pc;
 vectorΓNST logit_pg:
 vector[NS] pc:
 vectorΓNST pa:
 11
 for(n in 1:NS) {
   logit_pc[n] = mu[n];
   logit pg[n] = mu[n] + lor:
   //
   pc[n] = inv_logit(logit_pc[n]);
   pa[n] = inv_logit(logit_pa[n]);
model{
 ec ~ binomial(nc, pc):
 ea ~ binomial(na, pa);
 lor ~ normal(0, 100);
 mu ~ normal(0, 100):
```

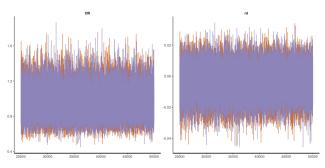
```
vector[2*NS] loa_lik;
vector[NS] rdi; // study-specific risk difference
real rd:
real phat_c;
real phat_a:
real abs_risk_reduction;
real OR:
real OR re less1:
real OR_re_less05:
real OR_re_gr2;
int post_prob_less1:
int post_prob_less05;
int post prob ar2:
for(n in 1:NS) {
  log_lik[n] = binomial_lpmf(ec[n] | nc[n], pc[n]);
  log_lik[NS+n] = binomial_lpmf(ea[n] | na[n], pa[n]);
for(n in 1:NS) {
  rdi[n] = pa[n]-pc[n];
rd = mean(rdi);
phat c = \exp(mean(mu))/(1+\exp(mean(mu))):
phat_a = exp(mean(mu)+lor)/(1+exp(mean(mu)+lor)):
abs_risk_reduction = phat_a-phat_c:
OR = exp(lor):
OR_re_less1 = -OR + 1:
OR_re_less05 = -OR + 0.5;
OR_re_ar2 = OR - 2:
post prob less1 = int step(OR re less1):
post_prob_less05 = int_step(OR_re_less05);
post prob ar2 = int step(OR re ar2):
```

Stal htelogit.stan = "data{

fects model

```
int NS: // number of studies
 int ec[NS]; // number of events in control
 int ea[NS]: // number of events in active
 int nc[NS]; // sample size in control
 int na[NS]: // sample size in active
parameters{
 real lor:
 real mu[NS]:
 real<lower=0> tau; // sd of delta
 real theta tilde[NS]:
transformed parameters{
 vectorΓNS7 logit_pc:
 vector[NS] logit_pa;
 vectorΓNSl delta:
 vector[NS] pc;
 vector[NS] pa:
 //
 for(n in 1:NS) {
   delta[n] = lor + tau*tau*theta_tilde[n];
   logit pc[n] = mu[n]:
    logit_pa[n] = mu[n] + delta[n];
   //
   pc[n] = inv_logit(logit_pc[n]);
   pa[n] = inv logit(logit pa[n]):
model{
 ec ~ binomial(nc, pc);
 ea ~ binomial(na, pa);
 //
 lor ~ normal(0, 100);
 mu ~ normal(0, 100):
 theta_tilde ~ normal(0, 1);
 tau \sim uniform(0.2):
```

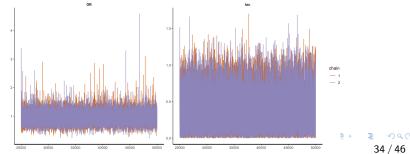
```
aenerated auantities{
  vector[NS*2] log_lik;
  vector[NS] rdi: // study-specific risk difference
  real rd:
  real phat_c:
  real phat_a;
  real abs_risk_reduction:
  real OR:
  real OR_re_less1:
  real OR re less05:
  real OR re ar2:
  int post_prob_less1;
  int post prob less05:
  int post_prob_gr2;
  for(n in 1:NS) {
    log lik[n] = binomial lpmf(ec[n] | nc[n], pc[n]);
    log_lik[NS+n] = binomial_lpmf(ea[n] | na[n], pa[n]);
  for(n in 1:NS) {
    rdi[n] = pa[n]-pc[n]:
  rd = mean(rdi):
  OR = exp(lor);
  phat c = \exp(mean(mu))/(1+\exp(mean(mu))):
  phat_a = exp(mean(mu)+lor)/(1+exp(mean(mu)+lor));
  abs risk reduction = phat a-phat c:
  0R \text{ re less1} = -0R + 1:
  OR_re_less05 = -OR + 0.5;
  OR_re_gr2 = OR - 2;
  post_prob_less1 = int_step(OR_re_less1);
  post_prob_less05 = int_step(OR_re_less05);
  post_prob_gr2 = int_step(0R_re_gr2);
```


R code to run stan models

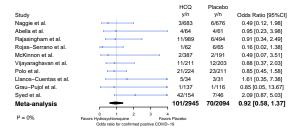
```
#### Run CTE_Logit ####
nchains <- 2
nthin <- 1
NS <- nrow(data)
ec <- data$ec
ea <- data$ea
nc <- data$nc
na <- data$na
niter <- 50000
nburnin <- 25000
stan.data <- list("NS" = NS, "ec" = ec, "ea" = ea, "nc" = nc, "na" = na)
stan.params <- c("OR", "rd", "phat_c", "phat_a", "abs_risk_reduction", "post_prob_less1", "post_prob_less05"
cte fit <- NULL
cte.fit <- stan(model_code = ctelogit.stan, data = stan.data, pars = stan.params, seed = 752346,
                chains = nchains, iter = niter, warmup = nburnin, control = list(adapt_delta = 0.99))
print(cte.fit)$summary
## Check convergence
traceplot(cte.fit, pars=c("OR", "rd"))
#library(bayesplot)
cte.post.array <- as.array(cte.fit)</pre>
mcmc_trace(cte.post.array, pars = c("OR", "rd"))
                                                               ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めの○
```

R outputs: Fixed effect model

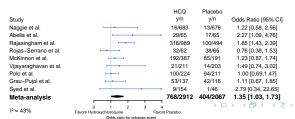
2 chains, each with iter=50000; warmup=25000; thin=1; post-warmup draws per chain=25000, total post-warmup draws=50000.


	mean	se_mean	sd	2.5%	25%	50%	75%	97.5%	n_eff	Rhat
OR	0.95	0.00	0.16	0.67	0.83	0.93	1.05	1.30	32552	1
rd	0.00	0.00	0.01	-0.02	-0.01	0.00	0.00	0.02	32216	1
phat_c	0.04	0.00	0.01	0.03	0.03	0.03	0.04	0.05	31608	1
phat_a	0.03	0.00	0.00	0.02	0.03	0.03	0.04	0.04	57437	1
abs_risk_reduction	0.00	0.00	0.01	-0.01	-0.01	0.00	0.00	0.01	31964	1
post_prob_less1	0.66	0.00	0.48	0.00	0.00	1.00	1.00	1.00	35316	1
post_prob_less05	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	40011	1
post_prob_gr2	0.00	NaN	0.00	0.00	0.00	0.00	0.00	0.00	NaN	NaN
lp	-611.84	0.02	2.40	-617.49	-613.22	-611.49	-610.09	-608.17	20985	1

R outputs: Random effects model


2 chains, each with iter=50000; warmup=25000; thin=1; post-warmup draws per chain=25000, total post-warmup draws=50000.

	mean	se_mean	sd	2.5%	25%	50%	75%	97.5%	n_eff	Rhat
tau	0.41	0.00	0.26	0.02	0.20	0.39	0.60	0.95	10494	1
OR	0.93	0.00	0.20	0.58	0.80	0.92	1.05	1.37	30567	1
rd	0.00	0.00	0.01	-0.02	-0.01	0.00	0.00	0.02	37798	1
phat_c	0.04	0.00	0.01	0.03	0.03	0.03	0.04	0.05	42388	1
phat_a	0.03	0.00	0.01	0.02	0.03	0.03	0.04	0.04	41107	1
abs_risk_reduction	0.00	0.00	0.01	-0.02	-0.01	0.00	0.00	0.01	31153	1
post_prob_less1	0.67	0.00	0.47	0.00	0.00	1.00	1.00	1.00	38570	1
post_prob_less05	0.01	0.00	0.09	0.00	0.00	0.00	0.00	0.00	23344	1
post_prob_gr2	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	25942	1
lp	-617.33	0.03	3.71	-625.38	-619.65	-617.07	-614.72	-610.77	13976	1



Forest plot

Confirmed positive COVID-19; $\hat{\tau} = 0.39$

Adverse event; $\hat{\tau} = 0.45$

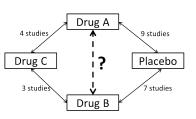
Additional results

The Bayesian posterior probabilities of the OR less than 1 for the confirmed SARS-CoV-2 infection outcome (ie, the probability of HCQ favouring over placebo) was 0.67, while the posterior probability of OR less than 0.5 (ie, the probability that the odds of having a confirmed SARS-CoV-2 infection outcome in HCQ is less than a half of the odds in placebo) was 0.009. The posterior probability of the OR greater than 2 for the adverse event outcome (ie, the probability that the odds of having an adverse event in HCQ is greater than twice of the odds in placebo) was 0.004.

Exercise

Use the adverse event outcome data and run Bayesian meta-analysis models!

Outline


Introduction

Meta-analysis

3 Network meta-analysis (NMA)

Network meta-analysis

Network meta-analysis (NMA) is an extension of the pairwise meta-analysis to address the comparative effectiveness and safety of multiple (i.e., more than 2) interventions by combining all sources of data.

- NMA may or may not include head-to-head RCTs of the treatments of primary interest. In such cases, we must rely on indirect comparisons that use statistical techniques to incorporate the findings from multiple studies.
- Bayesian random effects NMA models are fitted.
 - ▶ "Random effects" are used to account for heterogeneity across studies.
 - "Bayesian" is a natural choice to model hierarchical evidence and correlation.
 - "Bayesian" gives us useful probability-based metrics to rank treatments.

Examples

JAMA Cardiology | Original Investigation

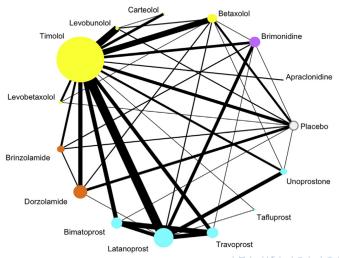
Safety and Efficacy of Antithrombotic Strategies in Patients With Atrial Fibrillation Undergoing Percutaneous Coronary Intervention A Network Meta-analysis of Randomized Controlled Trials

Renato D. Lopes, MD, PhD; Hwanhee Hong, PhD; Ralf E, Harskamp, MD, PhD; Deepak L. Bhatt, MD, MPH; Roxana Mehran, MD; Christopher P. Cannon, MD; Christopher B. Granger, MD; Freek W. A. Verheugt, MD, PhD; Jianghao Li, MS; Jurriën M. ten Berg, MD, PhD; Nikolaus Sarafoff, MD; C. Michael Gibson, MD; John H. Alexander. MD. MHS

Lopes et al. (2019). JAMA Cardiology 4;747-755

Examples

Comparative Effectiveness of First-Line Medications for Primary Open-Angle Glaucoma


A Systematic Review and Network Meta-analysis

Tianjing Li, MD, PhD, ¹ Kristina Lindsley, MS, ¹ Benjamin Rouse, MHS, ² Hwanhee Hong, PhD, ³ Qiyuan Shi, MHS, ² David S. Friedman, MD, PhD, ⁴ Richard Wormald, FRCOphth, ⁵ Kay Dickersin, MA, PhD¹

Li et al. (2015). Ophthalmology 123:129-140

NMA: POAG example

POAG: Primary Open-Angle Glaucoma

NMA: POAG results

Table 2. Summary Estimates for Intraocular Pressure at 3 Months Derived from Network Meta-analysis of 114 Trials*

Placebo	-2.52	-3.59	-2.24	-3.44	-4.51	-3.7	-2.56	-2.42	-2.49	-5.61	-4.85	-4.83	-4.37	-1.91
	(-4.11; -0.94)	(-4.29; -2.89)	(-2.88; -1.59)	(-4.46; -2.42)	(-5.24; -3.8)	(-4.24; -3.16)	(-3.62; -1.52)	(-3.23; -1.62)	(-3.13; -1.85)	(-6.29; -4.94)	(-5.46; -4.24)	(-5.54; -4.12)	(-5.83; -2.94)	(-2.67; -1.15)
2.52	Apraclonidine		0.28	-0.92	-2	-1.18	-0.05	0.09	0.03	-3.1	-2.33	-2.31	-1.85	0.61
(0.94; 4.11)		(-2.65; 0.52)	(-1.29; 1.87)	(-2.64; 0.81)	(-3.58; -0.39)	(-2.67; 0.31)	(-1.81; 1.72)	(-1.55; 1.75)	(-1.54; 1.62)	(-4.65; -1.53)	(-3.85; -0.79)	(-3.88; -0.73)	(-3.85; 0.15)	(-0.99; 2.23)
3.59	1.08	Brimonidine	1.35	0.15	-0.92	-0.11	1.03	1.17	1.1	-2.02	-1.25	-1.24	-0.78	1.69
(2.89; 4.29)	(-0.52; 2.65)		(0.67; 2.04)	(-0.87; 1.17)	(-1.69; -0.16)	(-0.64; 0.42)	(-0.05; 2.1)	(0.4; 1.92)	(0.4; 1.8)	(-2.69; -1.35)	(-1.8; -0.72)	(-1.92; -0.55)	(-2.23; 0.65)	(0.92; 2.45)
2.24	-0.28	-1.35	Betaxolol	-1.2	-2.28	-1.46	-0.32	-0.18	-0.25	-3.37	-2.61	-2.59	-2.13	0.33
(1.59; 2.88)	(-1.87; 1.29)	(-2.04; -0.67)		(-2.21; -0.19)	(-3.01; -1.55)	(-1.99; -0.94)	(-1.38; 0.72)	(-1.03; 0.65)	(-0.91; 0.4)	(-4.06; -2.7)	(-3.2; -2.02)	(-3.3; -1.89)	(-3.58; -0.7)	(-0.42; 1.08)
3.44	0.92	-0.15	1.2	Carteolol	-1.08	-0.26	0.88	1.02	0.95	-2.17	-1.41	-1.39	-0.93	1.53
(2.42; 4.46)	(-0.81; 2.64)	(-1.17; 0.87)	(0.19; 2.21)		(-2.07; -0.09)	(-1.14; 0.61)	(-0.42; 2.16)	(-0.11; 2.14)	(-0.07; 1.96)	(-3.16; -1.18)	(-2.35; -0.47)	(-2.4; -0.38)	(-2.54; 0.66)	(0.47; 2.59)
4.51	2	0.92	2.28	1.08	Levobunolol	0.81	1.95	2.09	2.03	-1.1	-0.33	-0.31	0.14	2.61
(3.8; 5.24)	(0.39; 3.58)	(0.16; 1.69)	(1.55; 3.01)	(0.09; 2.07)		(0.25; 1.38)	(0.86; 3.04)	(1.2; 2.99)	(1.28; 2.77)	(-1.83; -0.36)	(-0.99; 0.33)	(-1.06; 0.44)	(-1.32; 1.6)	(1.79; 3.43)
3.7	1.18	0.11	1.46	0.26	-0.81	Timolol	1.14	1.28	1.21	-1.91	-1.15	-1.13	-0.67	1.79
(3.16; 4.24)	(-0.31; 2.67)	(-0.42; 0.64)	(0.94; 1.99)	(-0.61; 1.14)	(-1.38; -0.25)		(0.19; 2.07)	(0.56; 1.99)	(0.69: 1.73)	(-2.38; -1.44)	(-1.5; -0.79)	(-1.63; -0.63)	(-2.02; 0.67)	(1.18; 2.41)
2.56	0.05	-1.03	0.32	-0.88	-1.95	-1.14	Levobetaxolol	0.14	0.07	-3.05	-2.28	-2.27	-1.81	0.66
(1.52; 3.62)	(-1.72; 1.81)	(-2.1; 0.05)	(-0.72; 1.38)	(-2.16; 0.42)	(-3.04; -0.86)	(-2.07; -0.19)		(-1.03; 1.32)	(-0.99; 1.14)	(-4.09; -1.99)	(-3.28; -1.27)	(-3.32; -1.19)	(-3.45; -0.18)	(-0.45; 1.78)
2.42	-0.09	-1.17	0.18	-1.02	-2.09	-1.28	-0.14	Brinzolamide	-0.07	-3.19	-2.42	-2.41	-1.95	0.52
(1.62; 3.23)	(-1.75; 1.55)	(-1.92; -0.4)	(-0.65; 1.03)	(-2.14; 0.11)	(-2.99; -1.2)	(-1.99; -0.56)	(-1.32; 1.03)		(-0.85; 0.71)	(-4.03; -2.36)	(-3.18; -1.66)	(-3.26; -1.55)	(-3.47; -0.44)	(-0.39; 1.43)
2.49	-0.03	-1.1	0.25	-0.95	-2.03	-1.21	-0.07	0.07	Dorzolamide	-3.12	-2.36	-2.34	-1.88	0.58
(1.85; 3.13)	(-1.62; 1.54)	(-1.8; -0.4)	(-0.4; 0.91)	(-1.96; 0.07)	(-2.77; -1.28)	(-1.73; -0.69)	(-1.14; 0.99)	(-0.71; 0.85)		(-3.8; -2.44)	(-2.95; -1.76)	(-3.05; -1.63)	(-3.32; -0.45)	(-0.19; 1.36)
5.61	3.1	2.02	3.37	2.17	1.1	1.91	3.05	3.19	3.12	Bimatoprost	0.77	0.78	1.24	3.71
(4.94; 6.29)	(1.53; 4.65)	(1.35; 2.69)	(2.7; 4.06)	(1.18; 3.16)	(0.36; 1.83)	(1.44; 2.38)	(1.99; 4.09)	(2.36; 4.03)	(2.44; 3.8)		(0.27; 1.26)	(0.26; 1.3)	(-0.18; 2.65)	(2.97; 4.44)
4.85	2.33	1.25	2.61	1.41	0.33	1.15	2.28	2.42	2.36	-0.77	Latanoprost	0.02	0.48	2.94
(4.24; 5.46)	(0.79; 3.85)	(0.72; 1.8)	(2.02; 3.2)	(0.47; 2.35)	(-0.33; 0.99)	(0.79; 1.5)	(1.27; 3.28)	(1.66; 3.18)	(1.76; 2.95)	(-1.26; -0.27)		(-0.5; 0.53)	(-0.91; 1.83)	(2.33; 3.55)
4.83	2.31	1.24	2.59	1.39	0.31	1.13	2.27	2.41	2.34	-0.78	-0.02	Travoprost	0.46	2.92
(4.12; 5.54)	(0.73; 3.88)	(0.55; 1.92)	(1.89; 3.3)	(0.38; 2.4)	(-0.44; 1.06)	(0.63; 1.63)	(1.19; 3.32)	(1.55; 3.26)	(1.63; 3.05)	(-1.3; -0.26)	(-0.53; 0.5)		(-0.98; 1.87)	(2.17; 3.68)
4.37	1.85	0.78	2.13	0.93	-0.14	0.67	1.81	1.95	1.88	-1.24	-0.48	-0.46	Tafluprost	2.46
(2.94; 5.83)	(-0.15; 3.85)	(-0.65; 2.23)	(0.7; 3.58)	(-0.66; 2.54)	(-1.6; 1.32)	(-0.67; 2.02)	(0.18; 3.45)	(0.44; 3.47)	(0.45; 3.32)	(-2.65; 0.18)	(-1.83; 0.91)	(-1.87; 0.98)		(1.01; 3.95)
1.91	-0.61	-1.69	-0.33	-1.53	-2.61	-1.79	-0.66	-0.52	-0.58	-3.71	-2.94	-2.92	-2.46	Unoprostone
(1.15; 2.67)	(-2.23; 0.99)	(-2.45; -0.92)	(-1.08; 0.42)	(-2.59; -0.47)	(-3.43; -1.79)	(-2.41; -1.18)	(-1.78; 0.45)	(-1.43; 0.39)	(-1.36; 0.19)	(-4.44; -2.97)	(-3.55; -2.33)	(-3.68; -2.17)	(-3.95; -1.01)	

*Posterior means (95% Bayesian credible intervals) are calculated by column — row under the Lu and Ades²² homogeneous random effects model assuming consistency. Mean difference <0 favors the drug in the column, and mean difference >0 favors the drug in the row. Color codings

Placebo/vehicle/no treatment Alpha-2 adrenergic agonist Beta-blocker Carbonic anhydrase inhibitor Prostaglandin analog

NMA: POAG results

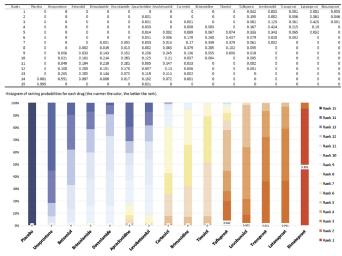


Figure 4. Ranking probabilities for any drug at any position

Summary

- MA and NMA are statistical methods to combine/integrate/synthesize multiple studies to generate relative effect estimates between two interventions.
- MA and NMA improve our understanding of comparative effectiveness of multiple interventions by leveraging multiple data sources.
- Statistical model specifications should be carefully reported.
- The effect estimates and associated 95% confidence/credible intervals should always be presented.
- The rankings based on probabilities are straightforward and attractive,
 BUT could be over-interpreted and misleading when making decisions.
- Many methods for meta-analysis are actively developing for specific topics such as generalizability, treatment effect heterogeneity, historical controls in RCTs.

Thank you!

www.HwanheeHong.com